Boundary conditions and the Wigner equation solution

نویسندگان

  • Ivan Dimov
  • Mihail Nedjalkov
  • Jean-Michel Sellier
  • Siegfried Selberherr
چکیده

We consider the existence and uniqueness of the solution of the Wigner equation in the presence of boundary conditions. The equation, describing electron transport in nanostructures, is analyzed in terms of the Neumann series expansion of the corresponding integral form, obtained with the help of classical particle trajectories. It is shown that the mathematical aspects of the solution can not be separated from the physical attributes of the problem. In the presented analysis these two sides of the problem mutually interplay, which is of importance for understanding of the peculiarities ofWigner-quantum transport. Theproblem isfirst formulated as the long time limit of a general evolution process posed by initial and boundary conditions. Then the Wigner equation is reformulated as a second kind of a Fredholm integral equation which is of Volterra type with respect to the time variable. The analysis of the convergence of the corresponding Neumann series, sometimes called Liouville–Neumann series, relies on the assumption for reasonable local conditions obeyed by the kernel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stationary Wigner Equation with Inflow Boundary Conditions: Will a Symmetric Potential Yield a Symmetric Solution?

Based on the well-posedness of the stationary Wigner equation with inflow boundary conditions given in [1], we prove without any additional prerequisite conditions that the solution of the Wigner equation with symmetric potential and inflow boundary conditions will be symmetric. This improve the result in [6] which depends on the convergence of solution formulated in the Neumann series. By nume...

متن کامل

Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary ‎conditions‎

Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...

متن کامل

Neumann Series Analysis of the Wigner Equation Solution

The existence and uniqueness of the electron transport Wigner equation solution, determined by boundary conditions, is analyzed in terms of the Neumann series expansion of the integral form of the equation, obtained with the help of Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum electron transport in semiconductor structures such mathematical issues can not be s...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions

In this paper has been studied the wave equation in some non-classic cases. In the  rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015